Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Environ Res ; 252(Pt 2): 118877, 2024 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-38609067

RESUMEN

Uranium is a natural radioelement (also a model for heavier actinides), but may be released through anthropogenic activities. In order to assess its environmental impact in a given ecosystem, such as the marine system, it is essential to understand its distribution and speciation, and also to quantify its bioaccumulation. Our objective was to improve our understanding of the transfer and accumulation of uranium in marine biota with mussels taken here as sentinel species because of their sedentary nature and ability to filter seawater. We report here on the investigation of uranium accumulation, speciation, and localization in Mytilus galloprovincialis using a combination of several analytical (Inductively Coupled Plasma Mass Spectrometry, ICP-MS), spectroscopic (X ray Absorption Spectroscopy, XAS, Time Resolved Laser Induced Fluorescence Spectroscopy, TRLIFS), and imaging (Transmission Electron Microscopy, TEM, µ-XAS, Secondary Ion Mass Spectrometry, SIMS) techniques. Two cohorts of mussels from the Toulon Naval Base and the Villefranche-sur-Mer location were studied. The measurement of uranium Concentration Factor (CF) values show a clear trend in the organs of M. galloprovincialis: hepatopancreas â‰« gill > body ≥ mantle > foot. Although CF values for the entire mussel are comparable for TNB and VFM, hepatopancreas values show a significant increase in those from Toulon versus Villefranche-sur-Mer. Two organs of interest were selected for further spectroscopic investigations: the byssus and the hepatopancreas. In both cases, U(VI) (uranyl) is accumulated in a diffuse pattern, most probably linked to protein complexing functions, with the absence of a condensed phase. While such speciation studies on marine organisms can be challenging, they are an essential step for deciphering the impact of metallic radionuclides on the marine biota in the case of accidental release. Following our assumptions on uranyl speciation in both byssus and hepatopancreas, further steps will include the inventory and identification of the proteins or metabolites involved.

2.
Sci Rep ; 14(1): 1021, 2024 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-38200072

RESUMEN

Legacy radioactive waste can be defined as the radioactive waste produced during the infancy of the civil nuclear industry's development in the mid-20th Century, a time when, unfortunately, waste storage and treatment were not well planned. The marine environment is one of the environmental compartments worth studying in this regard because of legacy waste in specific locations of the seabed. Comprising nearly 70% of the earth's service, the oceans are the largest and indeed the final destination for contaminated fresh waters. For this reason, long-term studies of the accumulation biochemical mechanisms of metallic radionuclides in the marine ecosystem are required. In this context the brown algal compartment may be ecologically relevant because of forming large and dense algal beds in coastal areas and potential important biomass for contamination. This report presents the first step in the investigation of uranium (U, an element used in the nuclear cycle) bioaccumulation in the brown alga Ascophyllum nodosum using a multi-scale spectroscopic and imaging approach. Contamination of A. nodosum specimens in closed aquaria at 13 °C was performed with a defined quantity of U(VI) (10-5 M). The living algal uptake was quantified by ICP-MS and a localization study in the various algal compartments was carried out by combining electronic microscopy imaging (SEM), X-ray Absorption spectroscopy (XAS) and micro X-ray Florescence (µ-XRF). Data indicate that the brown alga is able to concentrate U(VI) by an active bioaccumulation mechanism, reaching an equilibrium state after 200 h of daily contamination. A comparison between living organisms and dry biomass confirms a stress-response process in the former, with an average bioaccumulation factor (BAF) of 10 ± 2 for living specimens (90% lower compared to dry biomass, 142 ± 5). Also, these results open new perspectives for a potential use of A. nodosum dry biomass as uranium biosorbent. The different partial BAFs (bioaccumulation factors) range from 3 (for thallus) to 49 (for receptacles) leading to a compartmentalization of uranium within the seaweed. This reveals a higher accumulation capacity in the receptacles, the algal reproductive parts. SEM images highlight the different tissue distributions among the compartments with a superficial absorption in the thallus and lateral branches and several hotspots in the oospheres of the female individuals. A preliminary speciation XAS analysis identified a distinct U speciation in the gametes-containing receptacles as a pseudo-autunite phosphate phase. Similarly, XAS measurements on the lateral branches (XANES) were not conclusive with regards to the occurrence of an alginate-U complex in these tissues. Nonetheless, the hypothesis that alginate may play a role in the speciation of U in the algal thallus tissues is still under consideration.


Asunto(s)
Ascophyllum , Residuos Radiactivos , Uranio , Humanos , Femenino , Bioacumulación , Ecosistema , Espectroscopía de Absorción de Rayos X , Alginatos
3.
Chemistry ; 29(55): e202300636, 2023 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-37526142

RESUMEN

Transferrin (Tf) is a glycoprotein that transports iron from the serum to the various organs. Several studies have highlighted that Tf can interact with metals other than Fe(III), including actinides that are chemical and radiological toxics. We propose here to report on the behavior of Th(IV) and Pu(IV) in comparison with Fe(III) upon Tf complexation. We considered UV-Vis and IR data of the M2 Tf complex (M=Fe, Th, Pu) and combined experimental EXAFS data with MD models. EXAFS data of the first M-O coordination sphere are consistent with the MD model considering 1 synergistic carbonate. Further EXAFS data analysis strongly suggests that contamination by Th/Pu colloids seems to occur upon Tf complexation, but it seems limited. SAXS data have also been recorded for all complexes and also after the addition of Deferoxamine-B (DFOB) in the medium. The Rg values are very close for apoTf, ThTf and PuTf, but slightly larger than for holoTf. Data suggest that the structure of the protein is more ellipsoidal than spherical, with a flattened oblate form. From this data, the following order of conformation size might be considered:holoTf

Asunto(s)
Plutonio , Transferrina , Transferrina/química , Plutonio/química , Torio/química , Compuestos Férricos , Dispersión del Ángulo Pequeño , Difracción de Rayos X
4.
Chempluschem ; 87(8): e202200108, 2022 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-35778807

RESUMEN

Since the discovery of nuclear fission, atomic energy has become for mankind a source of energy, but it has also become a source of consternation. This Perspective presents and discusses the methodological evolution of the work performed in the radiochemistry laboratory that is part of the Institut de Chimie de Nice (France). Most studies in radioecology and environmental radiochemistry have intended to assess the impact and inventory of very low levels of radionuclides in specific environmental compartments. But chemical mechanisms at the molecular level remain a mystery because it is technically impossible (due to large dilution factors) to assess speciation in those systems. Ultra-trace levels of contamination and heterogeneity often preclude the use of spectroscopic techniques and the determination of direct speciation data, thus forming the bottleneck of speciation studies. The work performed in the Nice radiochemistry laboratory underlines this effort to input speciation data (using spectroscopic techniques like X ray Absorption Spectroscopy) in environmental and radioecological metrics.

5.
Int J Mol Sci ; 23(9)2022 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-35563121

RESUMEN

In case of an incident in the nuclear industry or an act of war or terrorism, the dissemination of plutonium could contaminate the environment and, hence, humans. Human contamination mainly occurs via inhalation and/or wounding (and, less likely, ingestion). In such cases, plutonium, if soluble, reaches circulation, whereas the poorly soluble fraction (such as small colloids) is trapped in alveolar macrophages or remains at the site of wounding. Once in the blood, the plutonium is delivered to the liver and/or to the bone, particularly into its mineral part, mostly composed of hydroxyapatite. Countermeasures against plutonium exist and consist of intravenous injections or inhalation of diethylenetetraminepentaacetate salts. Their effectiveness is, however, mainly confined to the circulating soluble forms of plutonium. Furthermore, the short bioavailability of diethylenetetraminepentaacetate results in its rapid elimination. To overcome these limitations and to provide a complementary approach to this common therapy, we developed polymeric analogs to indirectly target the problematic retention sites. We present herein a first study regarding the decontamination abilities of polyethyleneimine methylcarboxylate (structural diethylenetetraminepentaacetate polymer analog) and polyethyleneimine methylphosphonate (phosphonate polymeric analog) directed against Th(IV), used here as a Pu(IV) surrogate, which was incorporated into hydroxyapatite used as a bone model. Our results suggest that polyethylenimine methylphosphonate could be a good candidate for powerful bone decontamination action.


Asunto(s)
Elementos de Series Actinoides , Plutonio , Quelantes/química , Descontaminación/métodos , Durapatita , Humanos , Plutonio/química , Polietileneimina , Polímeros
6.
Environ Sci Technol ; 56(6): 3462-3470, 2022 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-35235315

RESUMEN

Since the first human release of radionuclides on Earth at the end of the Second World War, impact assessments have been implemented. Radionuclides are now ubiquitous, and the impact of local accidental release on human activities, although of low probability, is of tremendous social and economic consequences. Although radionuclide inventories (at various scales) are essential as input data for impact assessment, crucial information on physicochemical speciation is lacking. Among the metallic radionuclides of interest, cobalt-60 is one of the most important activation products generated in the nuclear industry. In this work, a marine model ecosystem has been defined because seawater and more generally marine ecosystems are final receptacles of metal pollution. A multistep approach from quantitative uptake to understanding of the accumulation mechanism has been implemented with the sea urchin Paracentrotus lividus. In a well-controlled aquarium, the day-by-day uptake of cobalt and its quantification in different compartments of the sea urchin were monitored with various conditions of exposure by combining ICP-OES analysis and γ spectrometry. Cobalt is mainly distributed following the rating intestinal tract ≫ gonads > shell spines. Cobalt speciation in seawater and inside the gonads and the intestinal tract was determined using extended X-ray absorption fine structure (EXAFS). The cobalt inside the gonads and the intestinal tract is mainly complexed by the toposome, the main protein in the sea urchin P. lividus. Complexation with purified toposome was characterized and a complexation site combining EXAFS and AIMD (ab initio molecular dynamics) was proposed implying monodentate carboxylates.


Asunto(s)
Paracentrotus , Animales , Cobalto , Ecosistema , Gónadas , Humanos , Paracentrotus/química , Agua de Mar
7.
J Synchrotron Radiat ; 29(Pt 1): 45-52, 2022 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-34985422

RESUMEN

Ferritin is the main protein of Fe storage in eukaryote and prokaryote cells. It is a large multifunctional, multi-subunit protein consisting of heavy H and light L subunits. In the field of nuclear toxicology, it has been suggested that some actinide elements, such as thorium and plutonium at oxidation state +IV, have a comparable `biochemistry' to iron at oxidation state +III owing to their very high tendency for hydrolysis and somewhat comparable ionic radii. Therefore, the possible mechanisms of interaction of such actinide elements with the Fe storage protein is a fundamental question of bio-actinidic chemistry. We recently described the complexation of Pu(IV) and Th(IV) with horse spleen ferritin (composed mainly of L subunits). In this article, we bring another viewpoint to this question by further combining modeling with our previous EXAFS data for Pu(IV) and Th(IV). As a result, the interaction between the L subunits and both actinides appears to be non-specific but driven only by the density of the presence of Asp and Glu residues on the protein shell. The formation of an oxyhydroxide Th or Pu core has not been observed under the experimental conditions here, nor the interaction of Th or Pu with the ferric oxyhydroxide core.


Asunto(s)
Elementos de Series Actinoides , Plutonio , Elementos de Series Actinoides/metabolismo , Animales , Compuestos Férricos , Ferritinas , Caballos , Plutonio/metabolismo , Torio/metabolismo
8.
Inorg Chem ; 60(4): 2149-2159, 2021 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-33522798

RESUMEN

The development of actinide decorporation agents with high complexation affinity, high tissue specificity, and low biological toxicity is of vital importance for the sustained and healthy development of nuclear energy. After accidental actinide intake, sequestration by chelation therapy to reduce acute damage is considered as the most effective method. In this work, a series of bis- and tetra-phosphonated pyridine ligands have been designed, synthesized, and characterized for uranyl (UO22+) decorporation. Owing to the absorption of the ligand and the luminescence of the uranyl ion, UV-vis spectroscopy and time-resolved laser-induced fluorescence spectroscopy (TRLFS) were used to probe in situ complexation and structure variation of the complexes formed by the ligands with uranyl. Density functional theory (DFT) calculations and X-ray absorption fine structure (XAFS) spectroscopy on uranyl-ligand complexes revealed the coordination geometry around the uranyl center at pH 3 and 7.4. High affinity constants (log K ∼17) toward the uranyl ion were determined by displacement titration. A preliminary in vitro chelation study proves that bis-phosphonated pyridine ligands can remove uranium from calmodulin (CaM) at a low dose and in the short term, which supports further uranyl decorporation applications of these ligands.

9.
Chemistry ; 27(7): 2393-2401, 2021 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-32955137

RESUMEN

The impact of the contamination of living organisms by actinide elements has been a constant subject of attention since the 1950s. But to date still little is understood. Ferritin is the major storage and regulation protein of iron in many organisms, it consists of a protein ring and a ferrihydric core at the center. This work sheds light on the interactions of early actinides (Th, Pu) at oxidation state +IV with ferritin and its ability to store those elements at physiological pH compared to Fe. The ferritin-thorium load curve suggests that ThIV saturates the protein (2840 Th atoms per ferritin) in a similar way that Fe does on the protein ring. Complementary spectroscopic techniques (spectrophotometry, infrared spectroscopy, and X-ray absorption spectroscopy) were combined with molecular dynamics to provide a structural model of the interaction of ThIV and PuIV with ferritin. Comparison of spectroscopic data together with MD calculations suggests that ThIV and PuIV are complexed mainly on the protein ring and not on the ferrihydric core. Indeed from XAS data, there is no evidence of Fe neighbors in the Th and Pu environments. On the other hand, carboxylates from amino acids of the protein ring and a possible additional carbonate anion are shaping the cation coordination spheres. This thorough description from a molecular view point of ThIV and PuIV interaction with ferritin, an essential iron storage protein, is a cornerstone in comprehensive nuclear toxicology.


Asunto(s)
Ferritinas/química , Ferritinas/metabolismo , Hierro/metabolismo , Plutonio/metabolismo , Torio/metabolismo , Animales , Caballos , Plutonio/química , Torio/química
10.
J Inorg Biochem ; 172: 46-54, 2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-28427004

RESUMEN

The threat of a dirty bomb which could cause internal contamination has been of major concern for the past decades. Because of their high chemical toxicity and their presence in the nuclear fuel cycle, uranium and neptunium are two actinides of high interest. Calmodulin (CaM) which is a ubiquitous protein present in all eukaryotic cells and is involved in calcium-dependent signaling pathways has a known affinity for uranyl and neptunyl ions. The impact of the complexation of these actinides on the physiological response of the protein remains, however, largely unknown. An isothermal titration calorimetry (ITC) was developed to monitor in vitro the enzymatic activity of the phosphodiesterase enzyme which is known to be activated by CaM and calcium. This approach showed that addition of actinyl ions (AnO2n+), uranyl (UO22+) and neptunyl (NpO2+), resulted in a decrease of the enzymatic activity, due to the formation of CaM-actinide complexes, which inhibit the enzyme and alter its interaction with the substrate by direct interaction. Results from dynamic light scattering rationalized this result by showing that the CaM-actinyl complexes adopted a specific conformation different from that of the CaM-Ca2+ complex. The effect of actinides could be reversed using a hydroxypyridonate actinide decorporation agent (5-LIO(Me-3,2-HOPO)) in the experimental medium demonstrating its capacity to efficiently bind the actinides and restore the calcium-dependent enzyme activation.


Asunto(s)
Elementos de Series Actinoides/química , Calmodulina/metabolismo , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 1/química , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 1/metabolismo , Elementos de Series Actinoides/farmacología , Arabidopsis/efectos de los fármacos , Arabidopsis/enzimología , Complejos de Coordinación/química , Complejos de Coordinación/farmacología , Activación Enzimática/efectos de los fármacos , Iones/química , Iones/farmacología , Cinética , Neptunio/química , Unión Proteica , Espectroscopía Infrarroja por Transformada de Fourier
11.
Inorg Chem ; 55(6): 2728-36, 2016 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-26954703

RESUMEN

Because of their presence in the nuclear fuel cycle, neptunium and uranium are two actinides of main interest in case of internal contamination. Complexation of U(VI) and Np(V) by the target protein calmodulin (CaM(WT)) was therefore studied herein. Both actinides have two axial oxygen atoms, which, charge aside, makes them very similar structurally wise. This work combines spectroscopy and theoretical density functional theory (DFT) calculations. Structural characterization was performed by extended X-ray absorption fine structure (EXAFS) at the L(III)-edge for each studied actinide. Models for the binding site of the protein were developed and then refined by using DFT to fit the obtained experimental EXAFS data. The effect of hydrolysis was also considered for both actinides (the uranyl experiment was performed at pH 3 and 6, while the neptunyl experiment was conducted at pH 7 and 9). The effect of the pH variation was apparent on the coordination sphere of the uranyl complexes, while the neptunyl complex characteristics remained stable under both studied conditions. The DFT calculations showed that at near physiological pH the complex formed by CaM(WT) with the neptunium ion is more stable than the one formed with uranyl.


Asunto(s)
Elementos de Series Actinoides/química , Calmodulina/química , Concentración de Iones de Hidrógeno , Modelos Moleculares , Espectroscopía de Absorción de Rayos X
12.
Inorg Chem ; 55(2): 877-86, 2016 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-26727631

RESUMEN

The complexation of uranium and europium, in oxidation states +VI and +III, respectively, was investigated with pertinent bio-inorganic systems. Three aspartate-rich pentapeptides with different structural properties were selected for study to rationalize the structure-affinity relationships. Thermodynamic results, crosschecked by both isothermal titration calorimetry and time-resolved laser fluorescence spectroscopy, showed different affinity depending on the peptide for both Eu(III) and U(VI). The thermodynamic aspects were correlated to structural predictions, which were acquired by density functional theory quantum chemical calculations and from IR and extended X-ray absorption fine structure experiments. The combination of these microscopic properties revealed that carbonyl-metal interactions affected the entropy in the case of europium, while the larger uranyl cation was mostly affected by preorganization and steric effects, so that the affinity was enhanced through enthalpy. The approach described here revealed various microscopic aspects governing peptide actinide affinity. Highlighting these mechanisms should certainly contribute to the rational synthesis of higher affinity biomimetic aspartic ligands.


Asunto(s)
Elementos de Series Actinoides/química , Péptidos/química , Estructura Molecular , Termodinámica , Espectroscopía de Absorción de Rayos X
13.
Inorg Chem ; 55(1): 29-36, 2016 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-26684435

RESUMEN

In case of a nuclear event, contamination (broad or limited) of the population or of specific workers might occur. In such a senario, the fate of actinide contaminants may be of first concern, in particular with regard to human target organs like the skeleton. To improve our understanding of the toxicological processes that might take place, a mechanistic approach is necessary. For instance, ∼50% of Pu(IV) is known from biokinetic data to accumulate in bone, but the underlining mechanisms are almost unknown. In this context, and to obtain a better description of the toxicological mechanisms associated with actinides(IV), we have undertaken the investigation, on a molecular scale, of the interaction of thorium(IV) with osteopontin (OPN) a hyperphosphorylated protein involved in bone turnover. Thorium is taken here as a simple model for actinide(IV) chemistry. In addition, we have selected a phosphorylated hexapeptide (His-pSer-Asp-Glu-pSer-Asp-Glu-Val) that is representative of the peptidic sequence involved in the bone interaction. For both the protein and the biomimetic peptide, we have determined the local environment of Th(IV) within the bioactinidic complex, combining isothermal titration calorimetry, attenuated total reflectance Fourier transform infrared spectroscopy, theoretical calculations with density functional theory, and extended X-ray absorption fine structure spectroscopy at the Th LIII edge. The results demonstrate a predominance of interaction of metal with the phosphate groups and confirmed the previous physiological studies that have highlighted a high affinity of Th(IV) for the bone matrix. Data are further compared with those of the uranyl case, representing the actinyl(V) and actinyl(VI) species. Last, our approach shows the importance of developing simplified systems [Th(IV)-peptide] that can serve as models for more biologically relevant systems.


Asunto(s)
Elementos de Series Actinoides/metabolismo , Huesos/metabolismo , Osteopontina/fisiología , Torio/química , Humanos , Oligopéptidos/fisiología , Osteopontina/química , Espectroscopía Infrarroja por Transformada de Fourier
14.
Chemistry ; 19(34): 11261-9, 2013 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-23824755

RESUMEN

Herein, we describe the structural investigation of one possible uranyl binding site inside a nonstructured protein. This approach couples spectroscopy, thermodynamics, and theoretical calculations (DFT) and studies the interaction of uranyl ions with a phosphopeptide, thus mimicking a possible osteopontin (OPN) hydroxyapatite growth-inhibition site. Although thermodynamical aspects were investigated by using time-resolved laser fluorescence spectroscopy (TRLFS) and isothermal titration calorimetry (ITC), structural characterization was performed by extended X-ray absorption fine structure (EXAFS) at the U LIII -edge combined with attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy. From the vibrational and fluorescence spectra, several structural models of a UO2 (2+) /peptide complex were developed and subsequently refined by using theoretical calculations to fit the experimental EXAFS obtained. The structural effect of the pH value was also considered under acidic to moderately acidic conditions (pH 1.5-5.5). Most importantly, the uranyl/peptide coordination environment was similar to that of the native protein.


Asunto(s)
Osteopontina/química , Uranio/química , Durapatita/química , Iones/química , Modelos Moleculares , Osteopontina/metabolismo , Fosfopéptidos/química , Fosforilación , Unión Proteica , Espectroscopía Infrarroja por Transformada de Fourier , Termodinámica , Uranio/metabolismo
15.
Inorg Chem ; 49(21): 9962-71, 2010 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-20883035

RESUMEN

The complexation of protactinium(V) by oxalate was studied by X-ray absorption spectroscopy (XAS), density functional theory (DFT) calculations, capillary electrophoresis coupled with inductively coupled plasma mass spectrometry (CE-ICP-MS) and solvent extraction. XAS measurements showed unambiguously the presence of a short single oxo-bond, and the deduced structure agrees with theoretical calculations. CE-ICP-MS results indicated the formation of a highly charged anionic complex. The formation constants of PaO(C(2)O(4))(+), PaO(C(2)O(4))(2)(-), and PaO(C(2)O(4))(3)(3-) were determined from solvent extraction data by using protactinium at tracer scale (C(Pa) < 10(-10) M). Complexation reactions of Pa(V) with oxalate were found to be exothermic with relatively high positive entropic variation.


Asunto(s)
Oxalatos/química , Protactinio/química , Termodinámica , Electroforesis Capilar , Espectrometría de Masas , Estructura Molecular , Soluciones
16.
Chemistry ; 16(4): 1378-87, 2010 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-19950335

RESUMEN

The impact of actinides on living organisms has been the subject of numerous studies since the 1950s. From a general point of view, these studies show that actinides are chemical poisons as well as radiological hazards. Actinides in plasma are assumed to be mainly complexed to transferrin, the iron carrier protein. This paper casts light on the uptake of actinides(IV) (thorium, neptunium, plutonium) by transferrin, focusing on the pH dependence of the interaction and on a molecular description of the cation binding site in the protein. Their behavior is compared with that of iron(III), the endogenous transferrin cation, from a structural point of view. Complementary spectroscopic techniques (UV/Vis spectrophotometry, microfiltration coupled with gamma spectrometry, and X-ray absorption fine structure) have been combined in order to propose a structural model for the actinide-binding site in transferrin. Comparison of our results with data available on holotransferrin suggests some similarities between the behavior of Fe(III) and Np(IV)/Pu(IV)/ Np(IV) is not complexed at pH <7, whereas at pH approximately 7.4 complexation can be regarded as quantitative. This pH effect is consistent with the in vivo transferrin "cycle". Pu(IV) also appears to be quantitatively bound by apotransferrin at around pH approximately 7.5, whereas Th(IV) was never complexed under our experimental conditions. EXAFS data at the actinide edge have allowed a structural model of the actinide binding site to be elaborated: at least one tyrosine residue could participate in the actinide coordination sphere (two for iron), forming a mixed hydroxo-transferrin complex in which actinides are bound with transferrin both through An-tyrosine and through An--OH bonds. A description of interatomic distances is provided.


Asunto(s)
Elementos de Series Actinoides/química , Hierro/química , Transferrina/química , Elementos de Series Actinoides/metabolismo , Sitios de Unión , Humanos , Concentración de Iones de Hidrógeno , Hierro/sangre , Hierro/metabolismo , Neptunio/química , Neptunio/metabolismo , Plutonio/química , Plutonio/metabolismo , Espectrometría gamma , Espectrofotometría Ultravioleta , Torio/química , Torio/metabolismo , Transferrina/fisiología
17.
Inorg Chem ; 46(17): 6902-10, 2007 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-17649972

RESUMEN

Doubly bridged mu-alkoxo-mu-X (X = pyrazolato or acetato) dinuclear MnIII complexes of 2-hydroxy-N-{2-hydroxy-3-[(2-hydroxybenzoyl)amino]propyl}benzamide) (H5L1) and 2-hydroxy-N-{2-hydroxy-4-[(2-hydroxybenzoyl)amino]butyl}benzamide (H5L2), [Mn2(L)(pz)(MeOH)4].xMeOH (1, L = L1, x = 0.5; 2, L = L2, x = 0; Hpz = pyrazole) and [Mn2(L1)(OAc)(MeOH)4] (3), have been prepared, and their structure and magnetic properties have been studied. The X-ray diffraction analysis of 1 (C24.5H34Mn2N4O9.5, triclinic, P, a = 12.2050(7) A, b = 12.7360(8) A, c = 19.2780(10) A, alpha = 99.735(5) degrees , beta = 96.003(4) degrees , gamma = 101.221(5) degrees , V = 2867.6(3) A3, Z = 4), 2 (C25H34Mn2N4O9, triclinic, P, a = 9.4560(5) A, b = 11.0112(5) A, c = 13.8831(6) A, alpha = 90.821(4) degrees , beta = 92.597(4) degrees , gamma = 93.403(4) degrees , V = 1441.29(12) A3, Z = 2), and 3 (C23H32Mn2N2O11, triclinic, P, a = 10.511(5) A, b = 11.713(5) A, c = 13.135(5) A, alpha = 64.401(5) degrees , beta = 74.000(5) degrees , gamma = 66.774(5) degrees , V = 1329.3(10) A3, Z = 2) revealed that all complexes consist of dinuclear units which are further extended into 1D (1 and 3) and 2D (2) supramolecular networks via hydrogen-bonding interactions. Magnetic susceptibility data evidence antiferromagnetic interactions for all three complexes: J = -3.6 cm-1, D approximately 0 cm-1, g = 1.93 (1); J = -2.7 cm-1, D = 0.8 cm-1, g = 1.93 (2); J = -4.9 cm-1, D = 3.8 cm-1, g = 1.95 (3).

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...